
1© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Modeling with UML:
Basic Notations II

Prof. Bernd Bruegge, Ph.D.
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
Lecture 3

8 November 2006

2© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of this Class

• A more detailed view on

• Use case diagrams
• Class diagrams
• Sequence diagrams
• Activity diagrams

3© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML Use Case Diagrams

An Actor represents a role, that
is, a type of user of the system

Passenger

PurchaseTicket

Used during requirements
elicitation and analysis to
represent external behavior

Use case model:
The set of all use cases that
completely describe the
functionality of the system and
its environment

A use case represents a class of
functionality provided by the system
as an event flow

4© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Actors

• An actor models an external entity
which communicates with the
system:

• User
• External system
• Physical environment

• An actor has a unique name and an
optional description

• Examples:
• Passenger: A person in the train
• GPS satellite: An external system that

provides the system with GPS
coordinates.

Passenger

5© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Use Case

• A use case represents a class of
functionality provided by the
system as an event flow

• Use cases can be described
textually

• A textual use case description
consists of 6 parts:
1. Unique name
2. Participating actors
3. Entry conditions
4. Exit conditions
5. Flow of events
6. Special requirements

PurchaseTicket

6© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Textual Use Case
Description Example

1. Name: Purchase ticket

2. Participating actor:
Passenger

3. Entry condition:
• Passenger standing in

front of ticket distributor
• Passenger has sufficient

money to purchase ticket

4. Exit condition:
• Passenger has ticket

5. Flow of events:
1. Passenger selects the

number of zones to be
traveled

2. Ticket Distributor
displays the amount due

3. Passenger inserts
money, at least the
amount due

4. Ticket Distributor returns
change

5. Ticket Distributor issues
ticket

6. Special requirements:
None.

Passenger PurchaseTicket

7© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Uses Cases can be related

• Extends Relationship
• To represent seldom invoked use cases or exceptional

functionality

• Includes Relationship
• To represent functional behavior common to more than

one use case.

8© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The <<extends>> Relationship
• <<extends>> relationships

model exceptional or seldom
invoked cases

• The exceptional event flows
are factored out of the main
event flow for clarity

• Use cases representing
exceptional flows can extend
more than one use case

• The direction of an
<<extends>> relationship is to
the extended use case.

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>

9© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The <<includes>> Relationship
• <<includes>> relationship

represents common
functionality needed in more
than one use case

• <<includes>> behavior is
factored out for reuse, not
because it is an exception

• The direction of a
<<includes>> relationship is
to the using use case (unlike
the direction of the
<<extends>> relationship).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

<<includes>>

CollectMoney

<<includes>>

NoChange

<<extends>>

Cancel

<<extends>>

Cancel

<<extends>>

10© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Class Diagrams

• Class diagrams represent the structure of the
system

• Used
• during requirements analysis to model application

domain concepts
• during system design to model subsystems
• during object design to specify the detailed behavior

and attributes of classes.

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

* *

Trip
zone:Zone

Price: Price

11© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Classes

• A class represents a concept
• A class encapsulates state (attributes) and behavior

(operations)

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

zone2price
getZones()
getPrice()

TarifSchedule

Name

Attributes

Operations

Signature

TarifSchedule

The class name is the only mandatory information

Each attribute has a type
Each operation has a signature

Type

12© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Instances

• An instance represents a phenomenon
• The attributes are represented with their values
• The name of an instance is underlined
• The name can contain only the class name of the instance

(anonymous instance)

zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

tarif2006:TarifSchedule
zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

:TarifSchedule

13© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Actor vs Class vs Object

• Actor
• An entity outside the system to be modeled,

interacting with the system (“Passenger”)

• Class
• An abstraction modeling an entity in the application or

solution domain
• The class is part of the system model (“User”, “Ticket

distributor”, “Server”)

• Object
• A specific instance of a class (“Joe, the passenger who

is purchasing a ticket from the ticket distributor”)

14© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Associations

Associations denote relationships between classes

Price
Zone

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule TripLeg

* *

The multiplicity of an association end denotes how many
objects the instance of a class can legitimately reference.

15© 2006 Bernd Bruegge Software Engineering WS 2006/2007

1-to-1 and 1-to-many Associations

1-to-1 association

1-to-many association

Polygon

draw()

Point

x: Integer

y: Integer

*

Country

name:String

City

name:String

11

16© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Many-to-Many Associations

StockExchange

Company

tickerSymbol
Lists

**

Name of Assocation

17© 2006 Bernd Bruegge Software Engineering WS 2006/2007

From Problem Statement To Object Model

Class Diagram:

StockExchange Company

tickerSymbol
Lists

**

Problem Statement: A stock exchange lists many companies.
Each company is uniquely identified by a ticker symbol

18© 2006 Bernd Bruegge Software Engineering WS 2006/2007

From Problem Statement to Code

Problem Statement : A stock exchange lists many companies.
Each company is identified by a ticker symbol

Class Diagram:

 private Vector m_Company = new Vector();

 public int m_tickerSymbol;
 private Vector m_StockExchange = new Vector();

public class StockExchange
{

};

public class Company
{

};

Java Code

StockExchange Company

tickerSymbolLists
**

Associations
are mapped to

Attributes!

19© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Aggregation
• An aggregation is a special case of association denoting

a “consists-of” hierarchy
• The aggregate is the parent class,

the components are the children classes

Exhaust system

Muffler
diameter

Tailpipe
diameter

1 0..2

TicketMachine

ZoneButton
3

A solid diamond denotes composition: A strong form of
aggregation where the life time of the component instances is
controlled by the aggregate (“the whole controls/destroys the
parts”)

20© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Qualifiers

• Qualifiers can be used to reduce the multiplicity
of an association

Directory
File

filename

Without qualification
1 *

With qualification

0..1
Directory File

1
filename

21© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Qualification (2)

*StockExchange
CompanyLists *tickerSymbol

1

StockExchange

Company

tickerSymbol
Lists

**

22© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Inheritance

• Inheritance is another special case of an
association denoting a “kind-of” hierarchy

• Inheritance simplifies the analysis model by
introducing a taxonomy

• The children classes inherit the attributes and
operations of the parent class.

Button

ZoneButtonCancelButton

23© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Modeling in Practice

Class Identification: Name of Class, Attributes and Methods

Is Foo the right name?

Foo

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

24© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Modeling in Practice: Brainstorming

Foo

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

Account

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()Is Foo the right name?

“Dada”

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

25© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Modeling in Practice: More classes

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

CustomerIdAccountIdBank

Name

1) Find New Classes
2) Review Names, Attributes and Methods

26© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Modeling in Practice: Associations

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

CustomerIdAccountIdAccountIdBank

Name

1) Find New Classes
2) Review Names, Attributes and Methods

3) Find Associations between Classes

owns

4) Label the generic assocations

6) Review associations

*
2

*?
has

5) Determine the multiplicity of the assocations

27© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Practice Object Modeling: Find Taxonomies

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId

Customer

Name

CustomerId()

Has*
Bank

Name
*

28© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Practice Object Modeling: Simplify, Organize

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId
Show Taxonomies

separately

29© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Practice Object Modeling: Simplify, Organize

Customer

Name

CustomerId()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId

Bank

Name Has**

Use the 7+-2 heuristics
or 5+-2!

30© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Packages

• Packages help you to organize UML models to
increase their readability

• We can use the UML package mechanism to
organize classes into subsystems

• Any complex system can be decomposed into
subsystems, where each subsystem is modeled as
a package.

Account

CustomerBank

31© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sequence Diagrams

• Used during analysis
• To refine use case descriptions
• to find additional objects

(“participating objects”)

• Used during system design
• to refine subsystem interfaces

• Instances are represented by
rectangles. Actors by sticky
figures

• Lifelines are represented by
dashed lines

• Messages are represented by
arrows

• Activations are represented
by narrow rectangles.

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

TicketMachinePassenger

Focus on
Controlflow

Messages ->
Operations on

 participating Object

zone2price
selectZone()
insertCoins()
pickupChange()
pickUpTicket()

TicketMachine

32© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sequence Diagrams can also model the
Flow of Data

• The source of an arrow indicates the activation which sent
the message

• Horizontal dashed arrows indicate data flow, for example
return results from a message

Passenger

selectZone()

ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow
…continued on next slide...

33© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sequence Diagrams: Iteration & Condition

• Iteration is denoted by a * preceding the message name
• Condition is denoted by boolean expression in [] before

the message name

Passenger ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

…continued on next slide...

…continued from previous slide...

*

34© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Creation and destruction

• Creation is denoted by a message arrow pointing to the object.
• Destruction is denoted by an X mark at the end of the

destruction activation.
• In garbage collection environments, destruction can be used to

denote the end of the useful life of an object.

Passenger ChangeProcessor

…continued from previous slide...

Ticket

createTicket(selection)

free()

Creation of Ticket

Destruction of Ticket

print()

35© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sequence Diagram Properties

• UML sequence diagram represent behavior in
terms of interactions

• Useful to identify or find missing objects
• Time consuming to build, but worth the

investment
• Complement the class diagrams (which

represent structure).

36© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of this Class

• A more detailed view on

Use case diagrams
Class diagrams
Sequence diagrams
Activity diagrams

37© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Activity Diagrams

• An activity diagram is a special case of a state
chart diagram

• The states are activities (“functions”)
• An activity diagram is useful to depict the

workflow in a system

Handle
Incident

Document
Incident

Archive
Incident

38© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Activity Diagrams allow to model Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Decision

39© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Activity Diagrams can model Concurrency

• Synchronization of multiple activities
• Splitting the flow of control into multiple threads

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

SynchronizationSplitting

40© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Activity Diagrams: Grouping of Activities

• Activities may be grouped into swimlanes to
denote the object or subsystem that implements
the activities.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer

41© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Activity Diagram vs. Statechart Diagram

Handle
Incident

Document
Incident

Archive
Incident

Active Inactive Closed Archived
Incident-
Handled

Incident-
Documented

Incident-
Archived

Statechart Diagram for Incident
Focus on the set of attributes of a single abstraction (object, system)

Activity Diagram for Incident
(Focus on dataflow in a system)

Triggerless
transitionCompletion of activity

causes state transition

Event causes
state transition

42© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML Summary

• UML provides a wide variety of notations for
representing many aspects of software
development

• Powerful, but complex

• UML is a programming language
• Can be misused to generate unreadable models
• Can be misunderstood when using too many exotic

features

• We concentrate on a few notations:
• Functional model: Use case diagram
• Object model: class diagram
• Dynamic model: sequence diagrams, statechart and

activity diagrams

